Telegram Group & Telegram Channel
Какова связь между собственными значениями и собственными векторами в PCA (методе главных компонент)?

В PCA собственные значения и собственные векторы играют ключевую роль в преобразовании исходных данных в новую систему координат.

🔹Собственные значения — связаны с каждым собственным вектором и представляют собой величину дисперсии данных вдоль соответствующего собственного вектора.
🔹Собственные векторы — это направления или оси в исходном пространстве признаков, вдоль которых данные изменяются сильнее всего или проявляют наибольшую дисперсию.

Связь между ними определяется как:

A*V = lambda*V, где
A = ковариационная матрица, полученная из исходной матрицы признаков
V = собственный вектор
lambda = собственное значение.

Большее собственное значение означает, что соответствующий собственный вектор захватывает больше дисперсии в данных. Сумма всех собственных значений равна общей дисперсии в исходных данных. Следовательно, долю общей дисперсии, объясняемую каждой главной компонентой, можно вычислить, разделив её собственное значение на сумму всех собственных значений.

#машинное_обучение
#линейная_алгебра



tg-me.com/ds_interview_lib/261
Create:
Last Update:

Какова связь между собственными значениями и собственными векторами в PCA (методе главных компонент)?

В PCA собственные значения и собственные векторы играют ключевую роль в преобразовании исходных данных в новую систему координат.

🔹Собственные значения — связаны с каждым собственным вектором и представляют собой величину дисперсии данных вдоль соответствующего собственного вектора.
🔹Собственные векторы — это направления или оси в исходном пространстве признаков, вдоль которых данные изменяются сильнее всего или проявляют наибольшую дисперсию.

Связь между ними определяется как:

A*V = lambda*V, где
A = ковариационная матрица, полученная из исходной матрицы признаков
V = собственный вектор
lambda = собственное значение.

Большее собственное значение означает, что соответствующий собственный вектор захватывает больше дисперсии в данных. Сумма всех собственных значений равна общей дисперсии в исходных данных. Следовательно, долю общей дисперсии, объясняемую каждой главной компонентой, можно вычислить, разделив её собственное значение на сумму всех собственных значений.

#машинное_обучение
#линейная_алгебра

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/261

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram announces Anonymous Admins

The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Библиотека собеса по Data Science | вопросы с собеседований from ua


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA